
BUOYANCY WAVES AS A THERMAL PUMP
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The joint effect of thermal conductivity, viscosity, and of an ascending flow on the thermodynamic processes
proceeding in buoyancy waves in a compressible medium is analyzed. It is shown that in this case the waves
act as a thermal pump that transfers heat from the upper cold layers of air to the lower warmer ones, thus
creating and sustaining a negative temperature gradient. This allows one to adequately explain the tempera-
ture stratification observed in the atmosphere and in Ranque–Hilsch tubes.
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Introduction. In a density-stratified fluid in an equilibrium position the surfaces of equal density coincide
with the equipotential lines of a mass force, whereas on being perturbed they vibrate about this position. Such vibra-
tions are called buoyancy waves. In application to the atmosphere, when the mass force is represented by the gravity
force, these waves are also called internal gravity waves. They have evoked a number of fundamental research contri-
butions [1–6]. In vortex chambers and in Ranque–Hilsch tubes the density stratification of a gas occurs under the ac-
tion of a centrifugal force and all conditions are created for the appearance of buoyancy waves. Regular pulsations of
pressure and velocity in such facilities are observed at all times, but they are interpreted otherwise, that is, as vortex
precession, a secondary vortex, or a regular turbulence [7–10].

It is well known that a thermal pump ensures thermal energy transfer from a cold source to a hot one, in so
doing consuming a certain quantity of mechanical energy. An ideal thermal pump operates on the reverse Carnot cycle
consisting of two adiabats and two isotherms, and it is characterized by a high conversion factor. Usually, such a proc-
ess is realized with the aid of machines such as a compressor and an expander combined with two heat exchangers on
the cold and hot sides. The technical complexity of such facilities makes one seek other techniques for realizing the
Carnot cycle. Buoyancy waves provide such a possibility without machines and heat exchangers.

Mathematical Statement of the Problem. We will consider plane vibrations of a density-stratified viscous
isothermal heat conducting gas in the field of a constant mass force.

The vibrations of a stratified atmosphere were considered in a great number of research works [1–4]. Below
the equations are given which will be needed to describe such vibrations: the first law of thermodynamics (energy
equation):

du = dq − dW , (1)

the equation of state in the general case, where the relationship between the density, pressure, and temperature is
expressed as

p = ρRT . (2)

In what follows we will use thermodynamic relations for isochoric and isobaric processes:

dq = cνdT ,     dν = 0 ; (3)

dq = cpdT ,     dp = 0 , (4)
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from which it follows that du = cνdT. The above equations allow one to obtain various dependences that will be used
in what follows:

dq = cνdT + pdν , (5)

dq = cpdT − νdp , (6)

dq
T

 = cp 
dT
T

 − R 
dp
p

 , (7)

dq
T

 = − cp 
dρ
ρ

 + cν 
dp
p

 . (8)

The continuity equation for a compressible medium is written as

∂ρ
∂t

 + ρ∇v = 0 . (9)

The momentum equation for a gas with viscosity μ has the form

ρ 
dv
dt

 = − ∇p + ρg + μΔv . (10)

In our case the mass force g is a constant vector that has one nonzero z component. Eliminating the tempera-
ture from Eqs. (5) and (6), we obtain the energy equation:

dp

dt
 = − 

cpp

cνν
 
dν
dt

 + 
R

νcν
 
dq

dt
 ,

in which the derivative dν ⁄ dt can be expressed with the aid of Eq. (9). This gives

dp

dt
 = − 

cp

cν
 p∇v + 

Rρ
cν

 
dq

dt
 . (11)

Equation (11) should be supplemented with the heat conduction equation that determines the change in the quantity of
heat in a volume due to the thermal conductivity of the medium:

ρ0 
dq
dt

 = λΔT .

The system of equations (2), (9)–(11), subject to the latter formula, serves for determining four unknown functions v,
p, ρ, and T. The constructive solution of this system is possible only for the case of small vibrations about a certain
stationary state. As the latter, we will take an isothermal equilibrium defined by the functions

v0 = 0 ,   T0 = const ,   p0 = ps exp 
⎛
⎜
⎝
− 

gz
RT0

⎞
⎟
⎠
 ,   ρ0 = ρs exp 

⎛
⎜
⎝
− 

gz
RT0

⎞
⎟
⎠
 .

We will r epresent a per turbed state in the form of sums:

v = v0 + av1 ,   p = p0 + ap1 ,   T = T0 + aT1 ,   q = q0 + aq1 .

For small perturbations, accurate to the values of the second order of smallness, we can obtain a linear system:
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ρ0 
∂v1

∂t
 = − ∇p1 + ρ1g + μΔv1 , (12)

p1 = R (ρ0T1 + ρ1T0) , (13)

∂p1

∂t
 + w1 

dp0

dz
 + 

cp

cν
 p0∇v1 = 

ρ0R

cν
 
∂q1

∂t
 . (14)

Instead of the differential equation of energy (14) it is convenient to use the energy integral obtainable from relations
(12) and (14).

We will rewrite the momentum equation (10), using the specific volume:

∂v1

∂t
 = − v∇p + g + νμΔv1 . (15)

Going over to the perturbed functions, instead of Eq. (12) we have

∂v1

∂t
 = − v1∇p0 − v0∇p1 + μν0Δv1 . (16)

On scalar multiplication of this equation by ρ0v1 and of Eq. (14) by p1
 ⁄ ρ0c2 and summation of the results, we obtain

∂

2∂t
 
⎛
⎜
⎝
ρ0v1

2
 + 

p1
2

ρ0c
2

⎞
⎟
⎠
 + 

dp0

dz
 w1 

⎛
⎜
⎝
ρ0v1 + 

p1

ρ0c
2

⎞
⎟
⎠
 + ∇ (p1v1) = 

Rp1dq1

c
2
cνdt

 + μv1Δv1 . (17)

Here c = √⎯⎯⎯⎯⎯γRT0 is the speed of sound in an isothermal atmosphere. The differential relation (8) after integration in the
considered approximation can be written in the form

q1

T0
 = − 

cpρ1

ρ0
 + 

cνp1

p0
 ,

which allows us to transform the expression entering into the energy equation:

v1ρ0 + 
p1

ρ0c
2 = − 

ρ1

ρ0

 + 
p1

γρ0RT0

 = 
q1

cpT0

 ,     γ = 
cp

cν
 .

Thus, relation (17) will be written as

∂

2∂t
 
⎛
⎜
⎝
ρ0v1

2
 + 

p1
2

ρ0c
2

⎞
⎟
⎠
 + 

dp0

dz
 

q1

cpT0

 w1 + ∇ (p1v1) = 
Rp1dq1

c
2
cνdt

 + μv1Δv1 . (18)

Let us express the vibrations of the vertical velocity component in terms of entropy fluctuations: s1 = q1
 ⁄ T0.

For this purpose we will use the evident relationship

∂s1

∂t
 + w1 

ds0

dz
 = 

dq1

T0dt
 .

Elimination of w1 from Eq. (18) yields
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1

2
 
∂

∂t
 
⎡
⎢
⎣
ρ0v1

2
 + 

p1
2

ρ0c
2 − 

s1
2

cp

 
dp0

dz
 ⁄ ds0

dz

⎤
⎥
⎦
 + ∇ (p1v1) = 

⎡
⎢
⎣

Rp1

c
2
cν

 − 
s1

cpT0

 
dp0

dz
 ⁄ ds0

dz

⎤
⎥
⎦
 
dq1

dt
 + μv1∇v1 . (19)

From the equation of state that can be written as ν = RT ⁄ p and thermodynamic equation (6) we can obtain

s1 = 
q1

T0
 = 

cpT1

T0
 − 

Rp1
p0

 . (20)

For an isothermal atmosphere ds0 = 
−Rdp1

dp0
, whence 

dp0

dz
  ⁄ ds0

dz
 = −

p0

R
. This allows the right-hand side of relation (19)

to be rearranged as

Rp1

cνc
2 − 

s1

cpT0

 
dp0

dz
 ⁄ ds0

dz
 = ρ0 

T1

T0

 .

If now we express the thermal energy supply intensity with the aid of the heat-conduction equation, then the
energy change law will take the following form:

∂E

∂t
 + ∇ (p1v1) = λ 

T1ΔT1

T0
 + μv1Δv1 ,

where

E = 
1

2
 
⎡
⎢
⎣

⎢
⎢
ρ0v1

2
 + p1

2 ⁄ ρ0c
2
 − 
⎛
⎜
⎝

dp0

dz
 ⁄ ds0

dz

⎞
⎟
⎠
 
s1
2

cp

⎤
⎥
⎦

⎥
⎥

is the total energy composed of the kinetic, acoustic, and, according to Eckart’s terminology [2], of the thermobaric
energy. In order to reveal the physical meaning of the third term, we will carry out the inverse transformation in ap-

plication to an adiabatic process for which 
∂s1

∂t
 + 

w1ds0
dz

 = 0, 
∂ζ
∂t

 = −
⎛
⎜
⎝

∂s1

∂t

⎞
⎟
⎠
  ⁄ ⎛⎜⎝

∂s0

∂t

⎞
⎟
⎠
. By definition the buoyancy fre-

quency (the Va
..
isa
..
la
..
–Brunt frequency) [2] is equal to N = √⎯⎯gds0

cpdz
. Using this definition and the well-known relation

of hydrostatistics, we find that the thermobaric energy is

− 
1

2cp
 
⎛
⎜
⎝

dp0

dz
 ⁄ ds0

dz
⎞
⎟
⎠
 s1

2
 = 

ρ0

2
 N

2ζ2
 .

It is seen that for adiabatic vibrations it is quantitatively equal to the potential energy. Using the Prandtl number Pr,
which is close to unity for air, the energy equation may be written as

∂E

∂t
 + ∇ (p1v1) = λ 

⎡
⎢
⎣

T1ΔT1

T0
 + 

Pr

cp
 v1Δv1

⎤
⎥
⎦
 . (21)

Solution of the Problem. The solution of the system of equations (12)–(14), (21) that describes nonadiabatic
vibrations of a viscous heat-conducting gas will be sought in the form of sums:
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T1 = Ta + √⎯⎯λ  
⎡
⎢
⎣

T2 (z)
√⎯⎯λ

⎤
⎥
⎦
 ,     w1 = wa + √⎯⎯λ  

⎡
⎢
⎣

w2 (z)
√⎯⎯λ

⎤
⎥
⎦
 ,     p1 = pa + √⎯⎯λ  

⎡
⎢
⎣

p2 (z)
√⎯⎯λ

⎤
⎥
⎦
 , (22)

where the first terms relate to stationary adiabatic vibrations of a nonviscous, nonconducting gas. In the solution rep-
resentation selected we have isolated the small factor √⎯⎯λ . As will be shown below, the expressions in square brackets
remain limited for λ → 0. Since the adiabatic solution is well known, we will write it in its final form [1]:

pa = 
N

2
Z (z)

m
2
 + Γ2

 + (N ⁄ c)2
 √⎯ρ0

ρs

 exp i (kx − ωt) ,

wa = − iω √⎯ρs

ρ0

 
sin mz

m
 exp i (kx − ωt) .

(23)

Here Z(z) = cos mz − (Γ ⁄ m) sin mz; ρs = ρ0(0); N = √⎯⎯⎯⎯⎯γ − 1  g ⁄ c is the Va
..
isa
..
la
..
–Brunt buoyancy frequency, Γ =

(2 − γ)g ⁄ c2 is the Eckart coefficient, and γ = cp
 ⁄ cν; m, k, ω are the wave numbers and the natural frequency that are

coupled by the dispersion relation

ω4

c
2  − ω2

 
⎡
⎢
⎣
k

2
 + m

2
 + 

N
2

c
2  + Γ2⎤

⎥
⎦
 + k

2
N

2
 = 0 . (24)

The equations of thermodynamics (7) and (8) allow us to express temperature and density in terms of the
pressure:

Ta = pa
 ⁄ (ρ0cp) , (25)

pa = pa
 ⁄ c2

 . (26)

With the aid of the continuity equation we can determine the horizontal velocity component Ua of adiabatic
vibrations. If this is done in the approximation of local incompressibility, which is valid for low-frequency vibrations,
we obtain

Ua = ω √⎯ρs

ρ0
 
cos mz

k
 exp i (ωt − kx) . (27)

The representation of (22) selected by us for nonadiabatic vibrations determines those additions to adiabatic
quantities that on the average for the period coincide with the known functions. The overbar will designate the result
of averaging over the variable x or, which is the same, over t. Then we may write w

__
1 = w2(z)p

_
1 = p2(z), etc.

In order to obtain equations for unknown functions, we substitute Eq. (22) into the system of equations (12)–
(14), (21) and average these equations over time. As a result, we obtain the following system of equations:

dp2
 ⁄ dz = − gρ2 , (28)

w2dρ0
 ⁄ dz + ρ0dw2

 ⁄ dz = 0 , (29)

p2 = R (ρ0T2 + ρ2T0) . (30)

In deriving them, we have availed ourselves of the fact that the average values of all the parameters for adiabatic
vibrations w

__
a = p

_
a = ρ

__
a = 0. Moreover, it is taken into account that the nonadiabatic addition is proportional to the

square root of thermal conductivity. Consequently, the viscous term omitted in Eq. (7) has the order of smallness λ3 ⁄ 2.
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Now, we will consider the energy equation (21). By virtue of the periodicity of the solution ∂E ⁄ ∂t
_____

 = 0. Con-
sequently, Eq. (21) with the above-adopted accuracy is reduced to

d (w1p1)
dz

 = λ ⎡⎣TaΔTa
 ⁄ T0

________
 + Pr vaΔva

_____
 ⁄ cp

⎤
⎦ + O (λ2) .

Using the equality wapa
____

 = 0, from relations (25) and (26), we obtain

d

dz
 (w2p2) = λ 

⎡
⎢
⎣
paΔ 

⎛
⎜
⎝

p
_

a

ρ0

⎞
⎟
⎠
 

1

cp
2ρ0T0

 + 
Pr

cp

 vaΔva

_____⎤
⎥
⎦
 . (31)

Provided m >> g ⁄ RT0, the following approximate relation will be valid:

Δ 
⎛
⎜
⎝

pa

ρ0

⎞
⎟
⎠
 = 

Δpa

ρ0
 � − (m2

 + k
2) 

pa

ρ0
 .

From the dispersion equation (24) it is seen that the large wave number m corresponds to the small frequency
ω. Consequently, the above-adopted condition can always be obeyed if we restrict our consideration to low-frequency
vibrations. In this case, Eq. (31) is reduced to the form

d

dz
 (w2p2) = − λ (m2

 + k
2) 
⎛
⎜
⎝

p
_

a
2

cp
2ρ0

2
T0

 + 
Pr

cp

 v
_

a
2⎞
⎟
⎠
 .

Substituting the ratios 
w2

√⎯⎯λ
 and 

p2

√⎯⎯λ
 into the above equation, we can easily see that they satisfy the equation that is in-

dependent of λ, as are also Eqs. (28)–(30), thus confirming our earlier assumption. We will transform the left-hand
side of the latter relation, using for this purpose the values of the derivatives and functional couplings (28)–(30):

d

dz
 (w2p2) = 

w2ρ0gT2

T0
 . (32)

We note that the integral w2ρ0 = w2(0)ρs = const follows from Eq. (29).
The transformations made allow us to express the temperature addition that appeared because of the viscosity

and thermal conductivity of the gas:

T2
T0

 = − 
A (m2

 + k
2)

gw2 (0)
 
⎛
⎜
⎝

p
_

a
2

cpρ0T0
 + Pr v

_
a
2ρ0

⎞
⎟
⎠
 
⎛
⎜
⎝

ρs

ρ0

⎞
⎟
⎠
 ,     A = 

λ
ρscp

 .
  
(33)

The values of the quantities defined by Eqs. (23) and (27) for the functions pa and va entering into Eq. (33)
allow us to determine their mean square values:

p
_

a
2
 = 

N
4ρ0ρsZ

2
 (z)

2 [m
2
 + Γ2

 + (N ⁄ c)2]
 ,

v
_

a
2
 = wa

2
 + Ua

2
 = 

ω2ρs

2m
2ρ0

 
⎛
⎜
⎝
sin

2
 mz + 

m
2

k
2  cos

2
 mz

⎞
⎟
⎠
 .

(34)

The solution obtained contains both acoustic waves and the buoyancy waves proper. The latter correspond to low fre-
quencies. In this case, the dispersion relation can be replaced by (ω ⁄ k)2 = N2[m2 + Γ2 + (N ⁄ c)2]; consequently
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v
_

a
2
 = 

N
2

2ρ0 
⎡
⎢
⎣
m

2
 + Γ2

 + 
⎛
⎜
⎝

N
c

⎞
⎟
⎠

2⎤
⎥
⎦

 
⎛
⎜
⎝
cos

2
 mz + 

k
2

m
2 sin

2
 mz

⎞
⎟
⎠

and Eq. (33) takes the form

T2

T0
 = − 

A (m2
 + k

2) S2

2gw2 (0)
 G , (35)

where

S
2
 = 

N
2

m
2
 + Γ2

 + (N ⁄ cs)
2 ;     G = 

S
2
 (1 − γ)

c
2  

⎛
⎜
⎝
cos

2
 mz + 

Γ2

m
2 sin

2
 mz − 

Γ
m

 sin
2
 mz

⎞
⎟
⎠
 exp 

⎛
⎜
⎝

gz

RT0

⎞
⎟
⎠
 

+ Pr 
⎛
⎜
⎝
cos

2
 mz + 

k
2

m
2 sin

2
 mz

⎞
⎟
⎠
 exp 

⎛
⎜
⎝

gz

RT0

⎞
⎟
⎠
 .

To this we should also add the nonperturbed distribution of pressure and density:

p0 = ps exp 
⎛
⎜
⎝
− 

gz
RT

⎞
⎟
⎠
 ,     ρ0 = ρs exp 

⎛
⎜
⎝
− 

gz
RT0

⎞
⎟
⎠
 . 

Having excluded the density from Eqs. (28) and (30), we obtain an equation for p2:

dp2

dz
 + 

p2g

RT0
 = 

gρ0T2

T0
 .

The solution of this equation without the right-hand side can be included into the zero approximation, whereas the so-
lution of the inhomogeneous equation can be represented by the quadrature:

p2 = 
gρs

T0
 exp 

⎛
⎜
⎝
− 

gz
RT0

⎞
⎟
⎠
 ∫ 
0

z

T2 (ξ) dξ , (36)

in which the temperature is expressed by formula (35).
To calculate the entropy perturbation, we will use Eq. (20). Having integrated it within small limits, we obtain

a relation for perturbed quantities for which we had adopted the representations (22). The operation of averaging al-
lows us to obtain the entropy increment due to the viscosity and thermal conductivity of the gas:

s2 = cp 
T2

T0

 − 
g

T0
2 ∫ 

0

z

T2 (ξ) dξ . (37)

Having found the vertical velocity component w2 = w2(0) exp (gz ⁄ RT0) from Eq. (29), we complete the definition of
all the quantities of interest to us.

In the classical statement of the problem the system of equations (2), (9)–(11) must be supplemented by
boundary-value conditions. Following the practice adopted in the theory of buoyancy waves, we have found periodic
solutions in a semispace; now we consider what boundary-value conditions the solution obtained will satisfy. In par-
ticular, we see that the vertical velocity component on the lower boundary of the region must be different from zero.

Indeed, if we consider the problems for which w2(0) = 0, then from the energy equation (21) we obtain
the condition dE ⁄ dt < 0, signifying that the vibrations are damping and that they cannot be sought in the form of
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per iodic functions (22). Moreover , only a cer tain value of the boundary value of w2(0) ensures the existence
of stationary vibrations. Equation (32), subject to (33), considered at z = 0 makes it possible to obtain the
needed value of w2(0) as a function of other parameters of the problem:

w2 (0) = − 
A (m2

 + k
2) S2

2g
 
⎡
⎢
⎣

S
2
 (1 − γ)

cs
2  + Pr

⎤
⎥
⎦
 

T0

T2 (0)
 . (38)

We note that w0 = 0 and wa = 0 at z = 0; consequently, the boundary value for w2(0) is the boundary
value for the total velocity on the boundary.

Strictly speaking, the temperature and the tangent component of the gas velocity on the boundary must
coincide with the values of these quantities for a solid wall, i.e., the boundary must have vibrations in the hori-
zontal plane and periodically change temperature according to the travelling wave law. Otherwise, dynamic and
temperature boundary layers appear near the boundary within which the oscillating values of the functions in
the gas correlate with the constant values of these functions on the boundary. The thicknesses of the dynamic
and temperature boundary layers have an order of √⎯⎯λ  and, consequently, have small dimensions. Thus, in the
entire flow region beyond the thin boundary layer we may use the solutions obtained above.

Analysis of Solution. Let us continue the solution analysis begun above. Consider Eq. (35) that defines
the temperature. It consists of the product of an oscillating function of the form cos2 mz and a slowly changing
function exp (gz ⁄ RT0). In our adopted condition of the smallness of wavelengths the value of temperature aver-
aged over the variable z is equal to

T2

T0

 = − 
as (m

2
 + k

2) S2

4
 gw2 (0) 

⎡
⎢
⎣
 (1 − γ) 

S
2

c
2 + Pr

⎤
⎥
⎦
 exp 

⎛
⎜
⎝

gz

RT0

⎞
⎟
⎠
 .

We introduce the notation

P = 
as (m

2
 + k

2) S2

4
 gw2 (0) 

⎡
⎢
⎣
 (1 − γ) 

S
2

c
2 + Pr

⎤
⎥
⎦

and write the formula for the averaged temperature in the form

T2

T0
 = − P exp 

⎛
⎜
⎝

gz

RT0

⎞
⎟
⎠
 .

The averaged temperature gradient is equal to

dT1

dz
 = − 

Pg

RT0
 exp 

⎛
⎜
⎝

gz

RT0

⎞
⎟
⎠
 � − 

Pg

RT0
 .

As is known, according to the condition of convective stability of a stratified atmosphere the gradient
must not exceed the negative value −g ⁄ cp. Provided the condition is violated, in the atmosphere a convective
flow is induced that decreases the temperature gradient to an admissible value. If we take into account the
fact that the temperature and, consequently, its gradient oscillate over the altitude, it becomes clear why the
predicted value of 10oC per 1 km turns out to be smaller than the observed 6oC per 1 km of the altitude.

Let us take Eq. (31) and write it in an integral form:

w2 (z) p2 (z) − w2 (0) p2 (0) = − ∫ 
0

z

Qdξ ,   Q = − λ (m2
 + k

2) 
⎡
⎢
⎣

⎢
⎢

T
__

a
2

T0
 + 

Pr v
_

a
2

cp

⎤
⎥
⎦

⎥
⎥
 .
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This expression determines the work of pressure forces which is supplied to the volume considered. Precisely this
work compensates the dissipation of mechanical energy and ensures stationary vibrations of a viscous heat-conductivity
fluid. The right-hand side determines the equivalent quantity of thermal energy that is evolved in the volume and
should be transferred through the boundary.

The value of temperature averaged over the variable z allows one to determine the averaged value of entropy
from Eq. (37), if preliminarily it is subjected to the operation of averaging over the variable z. As a result we obtain
the dependence

s~ = − P 
⎡
⎢
⎣
cp + R 

⎛
⎜
⎝
1 − exp 

gz
RT0

⎞
⎟
⎠

⎤
⎥
⎦
 ,

from which it is seen that the entropy acquires a negative increment for the altitudes smaller than

z0 = 
RT0 ln 

⎛
⎜
⎝
1 + 

cp

R

⎞
⎟
⎠
 .

Since for a diatomic gas cp = 3.5R, then

z0 = 3RT0
 ⁄ 2g . (39)

Now, when the solution of the problem has been obtained, we may follow the dynamics and thermodynamics
of the liquid particles in Lagrangian variables. The motion of particles can be determined from the velocity vector. The
vertical component is prescribed by formula (23), and the horizontal one by relation (27).

Let us denote the Lagrangian coordinates of particles by ζ and ξ and the coordinates of the point in space
near which the particle performs small vibrations by x0 and z0. Then

∂ζ
∂t

 = 
ω
m

 √⎯ρs

ρ0
 sin mz0 sin (kx − ωt) ,

∂ξ
∂t

 = 
ω
k

 √⎯ρs

ρ0
 cos mz0 cos (kx − ωt) . 

Integration of these equations yields

ζ = z0 + 
1

m
 √⎯ρs

ρ0
 sin mz0 cos ϕ ,     ξ = x0 − 

1

k
 √⎯ρs

ρ0
 cos mz0 sin ϕ ,     ϕ = kx − ωt .

Having excluded the parameters ϕ, we find the trajectory along which the particles move:

(ζ − z0)
2

a
2  + 

(ξ − x0)
2

b
2  = 1 ,

(40)

where

a = 
1

m
 √⎯ρs

ρ0
 sin mz0 ;     b = 

1

k
 √⎯ρs

ρ0
 cos mz0 .

The dynamics of the process is determined by the momentum equation (12). In the approximation adopted by
us, the viscous term is calculated from the adiabatic value of velocity and may be considered a known function:
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ρ0 
dv1

dt
 = − ∇p1 + ρ1g + μΔva .

Since

Δva = − (m2
 + k

2) va ,

then

ρ0 
dv1

dt
 = − ∇p1 + ρ1g − μ (m2

 + k
2) va .

We note that the same equation can be obtained by using the Rayleigh method [2] with the only essential dif-
ference that in our case the coefficient at the velocity is the quantity to be calculated which depends on the flow pa-
rameters. The thermal processes are determined by the energy equation

∂p1

∂t
 + w1 

dp0

dz
 + γp0∇v1 = 

ρ0R

cν
 
dq1

dt
 ,

the right-hand side of which satisfies the heat conduction equation ρ0dq1
 ⁄ dt = −λΔT1.

Just as in the case of the momentum equation, the perturbation of temperature can be replaced by the adi-
abatic value. As a result we obtain

ρ0 
dq1

dt
 = − λ (m2

 + k
2) Ta . (41)

Formula (40) determines the elliptical trajectories along which the isolated particles of air move. Since the
wave numbers m and k can be arbitrary, then the values of the half-axes a and b of the ellipsoid depicted in Fig. 1
can also be arbitrary. In this very figure the sequences of phases that correspond to the change of phases of a ther-
modynamic process are indicated.

Expression (41) determines the intensity of a heat source or of a heat flux depending on the temperature sign.
Having expressed the adiabatic temperature in terms of the pressure with the aid of analytical representation, we rep-
resent the heat source function in the form

Φ (ϕ) = − λ (m2
 + k

2) Ta = − Φ0 cos ϕ ,   Φ0 = λR (m2
 + k

2) S2
 √⎯ρs

ρ0
 
Z (z0)
cνcp

 .

On the upper portion of the trajectory over which the particle passes from point 4 to point 1, the phase
changes in the interval −π ⁄ 4 ≤ ϕ ≤ π ⁄ 4. In this case the function Φ(ϕ) has a negative value and, consequently, the

Fig. 1. Trajectories and phases of the motion of a particle: 1) ϕ = π ⁄ 4; 2) 3π ⁄ 4;
3) 5π ⁄ 4; 4) 7π ⁄ 4.
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process proceeds with heat absorption, and on the lower portion from 2 to 3 (3π ⁄ 4 ≤ ϕ ≤ 5π ⁄ 4) the function Φ(ϕ) is
positive, and the process proceeds with heat release. At the same time, vertical portions 1–2 and 3–4 correspond to a
minimum value of the heat source density, since at the points ϕ = π ⁄ 2 and 3π ⁄ 2 the heat flux vanishes. Consequently,
over these portions the gas particle is compressed or expanded almost following an adiabat. We note that on the upper
portion the particle absorbs the low-potential heat at a temperature T0 − ⏐Ta⏐, whereas on the lower portion it evolves
a high-potential heat at a temperature T0 + ⏐Ta⏐. Precisely this mechanism is considered to be responsible for the de-
crease in the entropy and sustainment of a temperature gradient in the atmosphere.

In Fig. 2 the p–ν diagram of the cycle is depicted in which the considered gas particle participates. As is said
above, along the vertical portions 1–2 and 3–4 the processes progress almost following the adiabatic law. The horizon-
tal portions 4–1 correspond to expansion with heat supply, whereas portion 2–3 corresponds to compression with heat
removal. As is known, such a cycle corresponds to the reverse Carnot cycle and is realized in thermal pumps.

Formula (39) determines the altitude to which the action of the thermal pump propagates. The substitution of
the atmosphere parameters into it makes it possible to obtain the value z = 10.8 km. It coincides with the altitude of
the troposphere within which the temperature follows the linear law and then over tens of kilometers preserves its
value intact [1, 2].

It was a widespread erroneous opinion that the temperature gradient was sustained by the radiation balance,
that is, the earth’s surface absorbs solar energy due to which a high temperature of the lower atmosphere layers is
sustained, whereas the radiation of the upper layers into the outer space ensures their low temperature. In [11], calcu-
lation of temperature distribution in the atmosphere is given. It is determined by radiation absorption and reemission
of heat. The calculation shows that already beginning from an altitude of 3 km the radiation mechanism is unable to
create a temperature gradient and, more so, it cannot explain the temperature gradient jump observed on the upper
boundary of the troposphere. But a thermal pump that at each level pumps heat from a colder upper level towards a
hotter lower one and ceases its work at an altitude of 10.8 km can explain this jump. Indeed, if the performance of
a thermal pump turns out to be equal to the gradient heat flux, the heat transfer from level to level will be equal to
zero irrespective of the temperature gradient and of the thermal conductivity of air. At the same time, above the tro-
posphere, where the thermal pump ceases its work, identical temperature is sustained at various altitudes due to the
thermal conductivity.

As is known [12], the temperature gradient is determined by the condition of hydrostatic stability of the at-
mosphere and is equal to 10oC per 1 km. The discrepancy between this value and that observed, equal to 6oC per
1 km, can be explained by the spatial variable-oscillating law of change in the local temperature, as follows from
Eq. (35), i.e., the amplitude value of the temperature gradient is 10oC per 1 km, whereas its average value is only
6oC per 1 km.

In the Ranque–Hilsch tubes there are always velocity and pressure fluctuations that are never related to tem-
perature stratification. However, in the experimental work [9] data are given according to which a decrease in the level
of pressure fluctuations in the Ranque tube by 30 dB led to a decrease in the temperature difference by 30oC, which
may serve as an argument in favor of the adopted model of the process.

Conclusions. According to the present author’s opinion, the results obtained not only allow one to explain the
observed physical effects such as the temperature stratification in the atmosphere and in the Ranque tubes, but also to
create a thermal pump of simple construction with a high conversion factor.

Fig. 2. p–ν diagram of the process.
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NOTATION

A, thermal diffusivity of a gas, m2 ⁄ sec; a, b, dimensionless amplitudes; c, speed of sound, m ⁄ sec; cp, cν, heat
capacities at constant pressure and volume, J ⁄ (kg⋅oC); g, gravity force, m2 ⁄ sec; m, k, wave numbers, 1 ⁄ m; N, buoy-
ancy frequency, m2 ⁄ sec; p, pressure, N ⁄ m2; q, supplied heat, J ⁄ kg; R, gas constant, J ⁄ (kg⋅oC); S, velocity of the
propagation of waves, m ⁄ sec; s, entropy, J ⁄ (kg⋅oC); T, temperature, oC; t, time, sec; u, internal energy of a gas,
J ⁄ kg; v, velocity vector, m ⁄ sec; W, work of outer forces, W; w, vertical velocity component, m ⁄ sec; x, y, z, coordi-
nates of space, m; Γ, Eckart’s coefficient, 1 ⁄ m; γ = cp

 ⁄ cv, ratio of heat capacities; λ, thermal conductivity, W ⁄ (m⋅oC);
μ, dynamic viscosity, kg ⁄ (m⋅sec); ν = 1 ⁄ ρ, specific volume, m3 ⁄ kg; ρ, density, kg ⁄ m3; ξ, ζ, coordinates of a particle,
m. Subscripts: a, adiabatic process; 0, initial stationary state; 1, perturbed state; 2, averaged values of parameters; s,
boundary values of parameters.

REFERENCES

1. A. Gill, Atmosphere-Ocean Dynamics [Russian translation], Vol. 1, Mir, Moscow (1986).
2. E. Gossard and W. Hook, Waves in the Atmosphere [Russian translation], Mir, Moscow (1978).
3. J. Lighthill, Waves in Fluids [Russian translation], Mir, Moscow (1981).
4. J. S. Turner, Buoyancy Effects in Fluids [Russian translation], Mir, Moscow (1977).
5. J. Pedlosky, Geophysical Fluid Dynamics [Russian translation], Mir, Moscow (1984).
6. A. S. Monin, Theoretical Foundations of the Geophysical Hydrodynamics [in Russian], Gidrometeoizat, Lenin-

grad (1988).
7. A. K. Gupta, D. G. Lilley, and N. Syred, Swirl Flows [Russian translation], Mir, Moscow (1987).
8. S. V. Lukachev, Unstable gas flow modes in a Ranque vortex tube, Inzh.-Fiz. Zh., 41, No. 5, 784–790 (1981).
9. M. Kurosaka, Acoustic streaming in swirling flow and the Ranque–Hilsch (vortex-tube) effect, J. Fluid Mech.,

124, 134–178 (1981).
10. A. Roshko, Structure of turbulent shear flows — a newlook, AIAA J., 14, No. 10, 1349–1357 (1976).
11. R. M. Goody, Atmospheric Radiation [Russian translation], Mir, Moscow (1966).
12. L. D. Landau and E. M. Lifshits, Hydrodynamics [in Russian], Nauka, Moscow (1986).

58



<<
  /ASCII85EncodePages false
  /AllowTransparency false
  /AutoPositionEPSFiles true
  /AutoRotatePages /None
  /Binding /Left
  /CalGrayProfile (Gray Gamma 2.2)
  /CalRGBProfile (sRGB IEC61966-2.1)
  /CalCMYKProfile (ISO Coated v2 300% \050ECI\051)
  /sRGBProfile (sRGB IEC61966-2.1)
  /CannotEmbedFontPolicy /Error
  /CompatibilityLevel 1.3
  /CompressObjects /Off
  /CompressPages true
  /ConvertImagesToIndexed true
  /PassThroughJPEGImages true
  /CreateJDFFile false
  /CreateJobTicket false
  /DefaultRenderingIntent /Perceptual
  /DetectBlends true
  /DetectCurves 0.1000
  /ColorConversionStrategy /sRGB
  /DoThumbnails true
  /EmbedAllFonts true
  /EmbedOpenType false
  /ParseICCProfilesInComments true
  /EmbedJobOptions true
  /DSCReportingLevel 0
  /EmitDSCWarnings false
  /EndPage -1
  /ImageMemory 1048576
  /LockDistillerParams true
  /MaxSubsetPct 100
  /Optimize true
  /OPM 1
  /ParseDSCComments true
  /ParseDSCCommentsForDocInfo true
  /PreserveCopyPage true
  /PreserveDICMYKValues true
  /PreserveEPSInfo true
  /PreserveFlatness true
  /PreserveHalftoneInfo false
  /PreserveOPIComments false
  /PreserveOverprintSettings true
  /StartPage 1
  /SubsetFonts false
  /TransferFunctionInfo /Apply
  /UCRandBGInfo /Preserve
  /UsePrologue false
  /ColorSettingsFile ()
  /AlwaysEmbed [ true
  ]
  /NeverEmbed [ true
  ]
  /AntiAliasColorImages false
  /CropColorImages true
  /ColorImageMinResolution 150
  /ColorImageMinResolutionPolicy /Warning
  /DownsampleColorImages true
  /ColorImageDownsampleType /Bicubic
  /ColorImageResolution 150
  /ColorImageDepth -1
  /ColorImageMinDownsampleDepth 1
  /ColorImageDownsampleThreshold 1.50000
  /EncodeColorImages true
  /ColorImageFilter /DCTEncode
  /AutoFilterColorImages true
  /ColorImageAutoFilterStrategy /JPEG
  /ColorACSImageDict <<
    /QFactor 0.76
    /HSamples [2 1 1 2] /VSamples [2 1 1 2]
  >>
  /ColorImageDict <<
    /QFactor 0.76
    /HSamples [2 1 1 2] /VSamples [2 1 1 2]
  >>
  /JPEG2000ColorACSImageDict <<
    /TileWidth 256
    /TileHeight 256
    /Quality 15
  >>
  /JPEG2000ColorImageDict <<
    /TileWidth 256
    /TileHeight 256
    /Quality 15
  >>
  /AntiAliasGrayImages false
  /CropGrayImages true
  /GrayImageMinResolution 150
  /GrayImageMinResolutionPolicy /Warning
  /DownsampleGrayImages true
  /GrayImageDownsampleType /Bicubic
  /GrayImageResolution 150
  /GrayImageDepth -1
  /GrayImageMinDownsampleDepth 2
  /GrayImageDownsampleThreshold 1.50000
  /EncodeGrayImages true
  /GrayImageFilter /DCTEncode
  /AutoFilterGrayImages true
  /GrayImageAutoFilterStrategy /JPEG
  /GrayACSImageDict <<
    /QFactor 0.76
    /HSamples [2 1 1 2] /VSamples [2 1 1 2]
  >>
  /GrayImageDict <<
    /QFactor 0.76
    /HSamples [2 1 1 2] /VSamples [2 1 1 2]
  >>
  /JPEG2000GrayACSImageDict <<
    /TileWidth 256
    /TileHeight 256
    /Quality 15
  >>
  /JPEG2000GrayImageDict <<
    /TileWidth 256
    /TileHeight 256
    /Quality 15
  >>
  /AntiAliasMonoImages false
  /CropMonoImages true
  /MonoImageMinResolution 600
  /MonoImageMinResolutionPolicy /Warning
  /DownsampleMonoImages true
  /MonoImageDownsampleType /Bicubic
  /MonoImageResolution 600
  /MonoImageDepth -1
  /MonoImageDownsampleThreshold 1.50000
  /EncodeMonoImages true
  /MonoImageFilter /CCITTFaxEncode
  /MonoImageDict <<
    /K -1
  >>
  /AllowPSXObjects false
  /CheckCompliance [
    /None
  ]
  /PDFX1aCheck false
  /PDFX3Check false
  /PDFXCompliantPDFOnly false
  /PDFXNoTrimBoxError true
  /PDFXTrimBoxToMediaBoxOffset [
    0.00000
    0.00000
    0.00000
    0.00000
  ]
  /PDFXSetBleedBoxToMediaBox true
  /PDFXBleedBoxToTrimBoxOffset [
    0.00000
    0.00000
    0.00000
    0.00000
  ]
  /PDFXOutputIntentProfile (None)
  /PDFXOutputConditionIdentifier ()
  /PDFXOutputCondition ()
  /PDFXRegistryName ()
  /PDFXTrapped /False

  /Description <<
    /CHS <FEFF4f7f75288fd94e9b8bbe5b9a521b5efa7684002000410064006f006200650020005000440046002065876863900275284e8e55464e1a65876863768467e5770b548c62535370300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c676562535f00521b5efa768400200050004400460020658768633002>
    /CHT <FEFF4f7f752890194e9b8a2d7f6e5efa7acb7684002000410064006f006200650020005000440046002065874ef69069752865bc666e901a554652d965874ef6768467e5770b548c52175370300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c4f86958b555f5df25efa7acb76840020005000440046002065874ef63002>
    /DAN <>
    /DEU <>
    /ESP <>
    /FRA <>
    /ITA (Utilizzare queste impostazioni per creare documenti Adobe PDF adatti per visualizzare e stampare documenti aziendali in modo affidabile. I documenti PDF creati possono essere aperti con Acrobat e Adobe Reader 5.0 e versioni successive.)
    /JPN <>
    /KOR <FEFFc7740020c124c815c7440020c0acc6a9d558c5ec0020be44c988b2c8c2a40020bb38c11cb97c0020c548c815c801c73cb85c0020bcf4ace00020c778c1c4d558b2940020b3700020ac00c7a50020c801d569d55c002000410064006f0062006500200050004400460020bb38c11cb97c0020c791c131d569b2c8b2e4002e0020c774b807ac8c0020c791c131b41c00200050004400460020bb38c11cb2940020004100630072006f0062006100740020bc0f002000410064006f00620065002000520065006100640065007200200035002e00300020c774c0c1c5d0c11c0020c5f40020c2180020c788c2b5b2c8b2e4002e>
    /NLD (Gebruik deze instellingen om Adobe PDF-documenten te maken waarmee zakelijke documenten betrouwbaar kunnen worden weergegeven en afgedrukt. De gemaakte PDF-documenten kunnen worden geopend met Acrobat en Adobe Reader 5.0 en hoger.)
    /NOR <>
    /PTB <>
    /SUO <>
    /SVE <>
    /ENU <>
  >>
>> setdistillerparams
<<
  /HWResolution [2400 2400]
  /PageSize [594.000 792.000]
>> setpagedevice


